Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Brain Behav Immun ; 117: 36-50, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38182037

RESUMO

Risk factors contributing to dementia are multifactorial. Accumulating evidence suggests a role for pathogens as risk factors, but data is largely correlative with few causal relationships. Here, we demonstrate that intermittent murine cytomegalovirus (MCMV) infection of mice, alters blood brain barrier (BBB) permeability and metabolic pathways. Increased basal mitochondrial function is observed in brain microvessels cells (BMV) exposed to intermittent MCMV infection and is accompanied by elevated levels of superoxide. Further, mice score lower in cognitive assays compared to age-matched controls who were never administered MCMV. Our data show that repeated systemic infection with MCMV, increases markers of neuroinflammation, alters mitochondrial function, increases markers of oxidative stress and impacts cognition. Together, this suggests that viral burden may be a risk factor for dementia. These observations provide possible mechanistic insights through which pathogens may contribute to the progression or exacerbation of dementia.


Assuntos
Transtornos Cognitivos , Disfunção Cognitiva , Infecções por Citomegalovirus , Demência , Animais , Camundongos , Infecções por Citomegalovirus/complicações , Cognição
2.
Artigo em Inglês | MEDLINE | ID: mdl-36078846

RESUMO

Background: Informal familial caregivers of stroke survivors experience uncertainty that begins at the time of the stroke event and continues into home-based care. The uncertainty faced by caregivers contributes to poor mental and physical health outcomes. Objective: This review details the factors associated with, impacts of, and coping skills used to manage uncertainty across the caregiving trajectory. By defining uncertainty reduction and tolerance recommendations, this review also builds upon the Stroke Caregiver Readiness Model to improve preparedness following the stroke event. Methods: A meta-ethnographic review was systematically conducted on thirteen qualitative studies with 218 participants from four countries. The Critical Appraisal Skills Programme (CASP) was used to assess study quality. Results: Following the stroke event, caregivers reported a lack of knowing (e.g., about the cause of the stroke event and survivor prognoses) as contributing to post-stroke uncertainty. As a result of this uncertainty, caregivers expressed concerns about their abilities to navigate caregiving responsibilities and how to plan for the future. Longer-term concerns (e.g., managing finances) and feelings of hopelessness occurred after discharge. Still, caregivers identified strategies to manage uncertainty. Caregiver coping skills included present-focused thinking, gratitude, faith, humor, and social support. Conclusions: The uncertainty faced by informal familial caregivers of stroke survivors is pervasive and changes across time. Uncertainty reduction and tolerance interventions can be used to build upon caregiver strengths and promote preparedness across the caregiving trajectory.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Adaptação Psicológica , Antropologia Cultural , Cuidadores , Humanos , Sobreviventes , Incerteza
3.
Front Behav Neurosci ; 16: 850623, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35493954

RESUMO

Major depression is a significant medical issue impacting millions of individuals worldwide. Identifying factors contributing to its manifestation has been a subject of intense investigation for decades and several targets have emerged including sex hormones and the immune system. Indeed, an extensive body of literature has demonstrated that sex hormones play a critical role in modulating brain function and impacting mental health, especially among female organisms. Emerging findings also indicate an inflammatory etiology of major depression, revealing new opportunities to supplement, or even supersede, currently available pharmacological interventions in some patient populations. Given the established sex differences in immunity and the profound impact of fluctuations of sex hormone levels on the immune system within the female, interrogating how the endocrine, nervous, and immune systems converge to impact women's mental health is warranted. Here, we review the impacts of endogenous estrogens as well as exogenously administered estrogen-containing therapies on affect and immunity and discuss these observations in the context of distinct reproductive milestones across the female lifespan. A theoretical framework and important considerations for additional study in regards to mental health and major depression are provided.

4.
Viruses ; 15(1)2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36680154

RESUMO

Increasing evidence suggests that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection impacts neurological function both acutely and chronically, even in the absence of pronounced respiratory distress. Developing clinically relevant laboratory mouse models of the neuropathogenesis of SARS-CoV-2 infection is an important step toward elucidating the underlying mechanisms of SARS-CoV-2-induced neurological dysfunction. Although various transgenic models and viral delivery methods have been used to study the infection potential of SARS-CoV-2 in mice, the use of commonly available laboratory mice would facilitate the study of SARS-CoV-2 neuropathology. Herein we show neuroinflammatory profiles of immunologically intact mice, C57BL/6J and BALB/c, as well as immunodeficient (Rag2-/-) mice, to a mouse-adapted strain of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2 (MA10)). Our findings indicate that brain IL-6 levels are significantly higher in BALB/c male mice infected with SARS-CoV-2 MA10. Additionally, blood-brain barrier integrity, as measured by the vascular tight junction protein claudin-5, was reduced by SARS-CoV-2 MA10 infection in all three strains. Brain glial fibrillary acidic protein (GFAP) mRNA was also elevated in male C57BL/6J infected mice compared with the mock group. Lastly, immune-vascular effects of SARS-CoV-2 (MA10), as measured by H&E scores, demonstrate an increase in perivascular lymphocyte cuffing (PLC) at 30 days post-infection among infected female BALB/c mice with a significant increase in PLC over time only in SARS-CoV-2 MA10) infected mice. Our study is the first to demonstrate that SARS-CoV-2 (MA10) infection induces neuroinflammation in laboratory mice and could be used as a novel model to study SARS-CoV-2-mediated cerebrovascular pathology.


Assuntos
COVID-19 , SARS-CoV-2 , Camundongos , Masculino , Feminino , Animais , COVID-19/patologia , Pulmão , Doenças Neuroinflamatórias , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Camundongos Transgênicos
5.
Life Sci ; 284: 119881, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34389403

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an infectious disease that has spread worldwide. Current treatments are limited in both availability and efficacy, such that improving our understanding of the factors that facilitate infection is urgently needed to more effectively treat infected individuals and to curb the pandemic. We and others have previously demonstrated the significance of interactions between the SARS-CoV-2 spike protein, integrin α5ß1, and human ACE2 to facilitate viral entry into host cells in vitro. We previously found that inhibition of integrin α5ß1 by the clinically validated small peptide ATN-161 inhibits these spike protein interactions and cell infection in vitro. In continuation with our previous findings, here we have further evaluated the therapeutic potential of ATN-161 on SARS-CoV-2 infection in k18-hACE2 transgenic (SARS-CoV-2 susceptible) mice in vivo. We discovered that treatment with single or repeated intravenous doses of ATN-161 (1 mg/kg) within 48 h after intranasal inoculation with SARS-CoV-2 lead to a reduction of lung viral load, viral immunofluorescence, and improved lung histology in a majority of mice 72 h post-infection. Furthermore, ATN-161 reduced SARS-CoV-2-induced increased expression of lung integrin α5 and αv (an α5-related integrin that has also been implicated in SARS-CoV-2 interactions) as well as the C-X-C motif chemokine ligand 10 (Cxcl10), further supporting the potential involvement of these integrins, and the anti-inflammatory potential of ATN-161, respectively, in SARS-CoV-2 infection. To the best of our knowledge, this is the first study demonstrating the potential therapeutic efficacy of targeting integrin α5ß1 in SARS-CoV-2 infection in vivo and supports the development of ATN-161 as a novel SARS-CoV-2 therapy.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Tratamento Farmacológico da COVID-19 , COVID-19/prevenção & controle , Oligopeptídeos/uso terapêutico , SARS-CoV-2/fisiologia , Alanina Transaminase/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , COVID-19/virologia , Genoma Viral , Humanos , Integrinas/metabolismo , Fígado/enzimologia , Fígado/patologia , Pulmão/patologia , Pulmão/virologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oligopeptídeos/farmacologia , SARS-CoV-2/genética , Coloração e Rotulagem , Carga Viral/genética
6.
Neurobiol Aging ; 105: 115-128, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34062487

RESUMO

Heart disease and vascular disease positively correlate with the incidence of Alzheimer's disease (AD). Although there is ostensible involvement of dysfunctional cerebrovasculature in AD pathophysiology, the characterization of the specific changes and development of vascular injury during AD remains unclear. In the present study, we established a time-course for the structural changes and degeneration of the angioarchitecture in AD. We used cerebrovascular corrosion cast and µCT imaging to evaluate the geometry, topology, and complexity of the angioarchitecture in the brain of wild type and 3xTg AD mice. We hypothesized that changes to the microvasculature occur early during the disease, and these early identifiable aberrations would be more prominent in the brain subregions implicated in the cognitive decline of AD. Whole-brain analysis of the angioarchitecture indicated early morphological abnormalities and degeneration of microvascular networks in 3xTg AD mice. Our analysis of the hippocampus and cortical subregions revealed microvascular degeneration with onset and progression that was subregion dependent.


Assuntos
Envelhecimento/metabolismo , Envelhecimento/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Encéfalo/irrigação sanguínea , Microvasos/patologia , Placa Amiloide/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/psicologia , Animais , Encéfalo/diagnóstico por imagem , Cognição , Modelos Animais de Doenças , Progressão da Doença , Masculino , Camundongos Mutantes , Camundongos Transgênicos , Microvasos/diagnóstico por imagem , Microtomografia por Raio-X
7.
Cytokine Growth Factor Rev ; 58: 1-15, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33674185

RESUMO

SARS-CoV-2 is a novel coronavirus that severely affects the respiratory system, is the cause of the COVID-19 pandemic, and is projected to result in the deaths of 2 million people worldwide. Recent reports suggest that SARS-CoV-2 also affects the central nervous system along with other organs. COVID-19-associated complications are observed in older people with underlying neurological conditions like stroke, Alzheimer's disease, and Parkinson's disease. Hence, we discuss SARS-CoV-2 viral replication and its inflammation-mediated infection. This review also focuses on COVID-19 associated neurological complications in individuals with those complications as well as other groups of people. Finally, we also briefly discuss the current therapies available to treat patients, as well as ongoing available treatments and vaccines for effective cures with a special focus on the therapeutic potential of a small 5 amino acid peptide (PHSCN), ATN-161, that inhibits SARS-CoV-2 spike protein binding to both integrin α5ß1 and α5ß1/hACE2.


Assuntos
COVID-19/complicações , Doenças do Sistema Nervoso/virologia , Inflamação Neurogênica/virologia , SARS-CoV-2/patogenicidade , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , COVID-19/epidemiologia , Humanos , Doenças do Sistema Nervoso/epidemiologia , Inflamação Neurogênica/complicações , Neuroimunomodulação/fisiologia , Pandemias
8.
Biosens Bioelectron ; 177: 112967, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33429202

RESUMO

Currently colorimetric paper lateral flow strips (PLFS) encounter two major limitations, that is, low sensitivity and severe interference from complex sample matrices such as blood. These shortcomings limit their application in detection of low-concentration analytes in complex samples. To solve these problems, a PLFS has been developed by utilizing surface-enhanced Raman scattering (SERS) for sensing signal transduction. In particular, a hierarchical three-dimensional nanostructure has been designed to create "hot spots", which can significantly amplify the SERS sensing signal, leading to high sensitivity. As a result, this PLFS has demonstrated a limit of detection (LOD) of 5.0 pg mL-1 toward detection of S-100ß, a traumatic brain injury (TBI) protein biomarker in blood plasma. The PLFS has been successfully used for rapid measurement of S-100ß in clinical TBI patient samples taken in the emergency department. Availability of PLFS for blood testing would shift the paradigm of TBI patient management and clinical outcome in emergency departments. It is expected that this type of PLFS can be adapted for rapid detection of various human diseases due to its capability of measuring a low level of protein blood biomarkers in complex human fluids.


Assuntos
Técnicas Biossensoriais , Lesões Encefálicas Traumáticas , Biomarcadores , Humanos , Plasma , Subunidade beta da Proteína Ligante de Cálcio S100 , Análise Espectral Raman
9.
J Alzheimers Dis ; 75(1): 119-138, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32250296

RESUMO

Cerebrovascular pathology is pervasive in Alzheimer's disease (AD), yet it is unknown whether cerebrovascular dysfunction contributes to the progression or etiology of AD. In human subjects and in animal models of AD, cerebral hypoperfusion and hypometabolism are reported to manifest during the early stages of the disease and persist for its duration. Amyloid-ß is known to cause cellular injury in both neurons and endothelial cells by inducing the production of reactive oxygen species and disrupting intracellular Ca2+ homeostasis. We present a mechanism for mitochondrial degeneration caused by the production of mitochondrial superoxide, which is driven by increased mitochondrial Ca2+ uptake. We found that persistent superoxide production injures mitochondria and disrupts electron transport in cerebrovascular endothelial cells. These observations provide a mechanism for the mitochondrial deficits that contribute to cerebrovascular dysfunction in patients with AD.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Cálcio/metabolismo , Células Endoteliais/metabolismo , Mitocôndrias/metabolismo , Fragmentos de Peptídeos/farmacologia , Superóxidos/metabolismo , Regulação para Cima/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular , Células Endoteliais/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Fosforilação Oxidativa , Espécies Reativas de Oxigênio/metabolismo
10.
Brain Behav Immun ; 84: 115-131, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31778743

RESUMO

Sepsis is a host response to systemic inflammation and infection that may lead to multi-organ dysfunction and eventual death. While acute brain dysfunction is common among all sepsis patients, chronic neurological impairment is prevalent among sepsis survivors. The brain microvasculature has emerged as a major determinant of sepsis-associated brain dysfunction, yet the mechanisms that underlie its associated neuroimmune perturbations and behavioral deficits are not well understood. An emerging body of data suggests that inhibition of tissue-nonspecific alkaline phosphatase (TNAP) enzyme activity in cerebral microvessels may be associated with changes in endothelial cell barrier integrity. The objective of this study was to elucidate the connection between alterations in cerebrovascular TNAP enzyme activity and brain microvascular dysfunction in late sepsis. We hypothesized that the disruption of TNAP enzymatic activity in cerebral microvessels would be coupled to the sustained loss of brain microvascular integrity, elevated neuroinflammatory responses, and behavioral deficits. Male mice were subjected to cecal ligation and puncture (CLP), a model of experimental sepsis, and assessed up to seven days post-sepsis. All mice were observed daily for sickness behavior and underwent behavioral testing. Our results showed a significant decrease in brain microvascular TNAP enzyme activity in the somatosensory cortex and spinal cord of septic mice but not in the CA1 and CA3 hippocampal regions. Furthermore, we showed that loss of cerebrovascular TNAP enzyme activity was coupled to a loss of claudin-5 and increased perivascular IgG infiltration in the somatosensory cortex. Analyses of whole brain myeloid and T-lymphoid cell populations also revealed a persistent elevation of infiltrating leukocytes, which included both neutrophil and monocyte myeloid derived suppressor cells (MDSCs). Regional analyses of the somatosensory cortex, hippocampus, and spinal cord revealed significant astrogliosis and microgliosis in the cortex and spinal cord of septic mice that was accompanied by significant microgliosis in the CA1 and CA3 hippocampal regions. Assessment of behavioral deficits revealed no changes in learning and memory or evoked locomotion. However, the hot plate test uncovered a novel anti-nociceptive phenotype in our septic mice, and we speculate that this phenotype may be a consequence of sustained GFAP astrogliosis and loss of TNAP activity in the somatosensory cortex and spinal cord of septic mice. Taken together, these results demonstrate that the loss of TNAP enzyme activity in cerebral microvessels during late sepsis is coupled to sustained neuroimmune dysfunction which may underlie, in part, the chronic neurological impairments observed in sepsis survivors.


Assuntos
Fosfatase Alcalina/metabolismo , Encéfalo/irrigação sanguínea , Inflamação/complicações , Inflamação/enzimologia , Microvasos/enzimologia , Sepse/complicações , Sepse/psicologia , Animais , Encéfalo/patologia , Encéfalo/fisiopatologia , Linhagem Celular , Modelos Animais de Doenças , Humanos , Inflamação/psicologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sepse/enzimologia
11.
J Alzheimers Dis ; 70(1): 139-151, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31177221

RESUMO

Mitochondrial dysfunction is often found in Alzheimer's disease (AD) patients and animal models. Clinical severity of AD is linked to early deficiencies in cognitive function and brain metabolism, indicating that pathological changes may begin early in life. Previous studies showed decreased mitochondrial function in primary hippocampal neurons from triple-transgenic Alzheimer's disease (3xTg-AD) mice and mitochondrial movement and structure deficits in primary neurons exposed to amyloid-ß oligomers. The present study characterized mitochondrial movement, number, and structure in 3xTg-AD primary cortical neurons and non-transgenic (nonTg) controls. We found a significant reduction in mitochondrial number and movement in 3xTg-AD primary cortical neurons with modest structural changes. Additionally, application of the sigma-1 receptor agonist, (+)SKF-10,047, markedly increased mitochondrial movement in both 3xTg-AD and nonTg primary cortical cultures after one hour of treatment. (+)SKF-10,047 also led to a trend of increased mitochondrial number in 3xTg-AD cultures. Embryonic mitochondrial movement and number deficits could be among the key steps in the early pathogenesis of AD that compromise cognitive or metabolic reserve, and amelioration of these deficits could be a promising area for further preclinical and clinical study.


Assuntos
Doença de Alzheimer/metabolismo , Córtex Cerebral/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Doença de Alzheimer/patologia , Animais , Córtex Cerebral/patologia , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Mitocôndrias/patologia , Dinâmica Mitocondrial/fisiologia , Neurônios/patologia
12.
Aging Dis ; 10(2): 329-352, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31011481

RESUMO

Aging is a complex and integrated gradual deterioration of cellular activities in specific organs of the body, which is associated with increased mortality. This deterioration is the primary risk factor for major human pathologies, including cancer, diabetes, cardiovascular disorders, neurovascular disorders, and neurodegenerative diseases. There are nine tentative hallmarks of aging. In addition, several of these hallmarks are increasingly being associated with acute brain injury conditions. In this review, we consider the genes and their functional pathways involved in brain aging as a means of developing new strategies for therapies targeted to the neuropathological processes themselves, but also as targets for many age-related brain diseases. A single microRNA (miR), which is a short, non-coding RNA species, has the potential for targeting many genes simultaneously and, like practically all other cellular processes, genes associated with many features of brain aging and injury are regulated by miRs. We highlight how certain miRs can mediate deregulation of genes involved in neuroinflammation, acute neuronal injury and chronic neurodegenerative diseases. Finally, we review the recent progress in the development of effective strategies to block specific miR functions and discuss future approaches with the prediction that anti-miR drugs may soon be used in the clinic.

13.
Neurochem Int ; 127: 73-79, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30365981

RESUMO

Aging of the nervous system, and the occurrence of age-related brain diseases such as stroke, are associated with changes to a variety of cellular processes controlled by many distinct genes. MicroRNAs (miRNAs), short non-coding functional RNAs that can induce translational repression or site-specific cleavage of numerous target mRNAs, have recently emerged as important regulators of cellular senescence, aging, and the response to neurological insult. Here, we focused on the assessment of the role of miR-34a in stroke. We noted increases in miR-34a expression in the blood of stroke patients as well as in blood and brain of mice subjected to experimental stroke. Our methodical genetic manipulation of miR-34a expression substantially impacted stroke-associated preclinical outcomes and we have in vitro evidence that these changes may be driven at least in part by disruptions to blood brain barrier integrity and mitochondrial oxidative phosphorylation in endothelial cells. Finally, aging, independent of brain injury, appears to be associated with shifts in circulating miRNA profiles. Taken together, these data support a role for miRNAs, and specifically miR-34a, in brain aging and the physiological response to age-related neurological insult, and lay the groundwork for future investigation of this novel therapeutic target.


Assuntos
Isquemia Encefálica/genética , Infarto Cerebral/genética , MicroRNAs/genética , Acidente Vascular Cerebral/genética , Envelhecimento/fisiologia , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Senescência Celular/genética , Infarto Cerebral/metabolismo , Células Endoteliais/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fatores de Risco , Acidente Vascular Cerebral/metabolismo
14.
Mitochondrion ; 47: 244-255, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30594729

RESUMO

Astrocytes serve to maintain proper neuronal function and support neuronal viability, but remain largely understudied in research of cerebral ischemia. Astrocytic mitochondria are core participants in the metabolic activity of astrocytes. The objective of this study is to assess astrocyte mitochondrial competence during hypoxia and post-hypoxia reoxygenation and to determine cellular adaptive and pathological changes in the mitochondrial network. We hypothesize that during metabolic distress in astrocytes; mitochondrial networks undergo a shift in fission-fusion dynamics that results in a change in the morphometric state of the entire mitochondrial network. This mitochondrial network shift may be protective during metabolic distress by priming mitochondrial size and facilitating mitophagy. We demonstrated that hypoxia and post-hypoxia reoxygenation of rat primary astrocytes results in a redistribution of mitochondria to smaller sizes evoked by increased mitochondrial fission. Excessive mitochondrial fission corresponded to Drp-1 dephosphorylation at Ser 637, which preceded mitophagy of relatively small mitochondria. Reoxygenation of astrocytes marked the initiation of elevated mitophagic activity primarily reserved to the perinuclear region where a large number of the smallest mitochondria occurred. Although, during hypoxia astrocytic ATP content was severely reduced, after reoxygenation ATP content returned to near normoxic values and these changes mirrored mitochondrial superoxide production. Concomitant with these changes in astrocytic mitochondria, the number of astrocytic extensions declined only after 10-hours post-hypoxic reoxygenation. Overall, we posit a drastic mitochondrial network change that is triggered by a metabolic crisis during hypoxia; these changes are followed by mitochondrial degradation and retraction of astrocytic extensions during reoxygenation.


Assuntos
Astrócitos/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Mitofagia , Oxigênio/metabolismo , Animais , Astrócitos/patologia , Hipóxia Celular , Células Cultivadas , Dinaminas/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , Oxigênio/farmacologia , Ratos
15.
Metab Brain Dis ; 33(6): 2039-2044, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30267298

RESUMO

Chronic cerebrovascular hypoperfusion results in vascular dementia and increases predisposition to lacunar infarcts. However, there are no suitable animal models. In this study, we developed a novel model for chronic irreversible cerebral hypoperfusion in mice. Briefly, an ameroid constrictor was placed on the right carotid artery to gradually occlude the vessel, while a microcoil was placed on the left carotid artery to prevent compensation of the blood flow. This procedure resulted in a gradual hypoperfusion developing over a period of 34 days with no cerebral blood flow recovery. Histological analysis of the brain revealed neuronal and axonal degeneration as well as necrotic lesions. The most severely affected regions were located in the hippocampus and the corpus callosum. Overall, our paradigm is a viable model to study brain pathology resulting from gradual cerebrovascular hypoperfusion.


Assuntos
Artéria Carótida Primitiva/patologia , Estenose das Carótidas/patologia , Circulação Cerebrovascular/fisiologia , Demência Vascular/patologia , Modelos Animais de Doenças , Animais , Artéria Carótida Primitiva/fisiopatologia , Estenose das Carótidas/complicações , Estenose das Carótidas/fisiopatologia , Demência Vascular/etiologia , Demência Vascular/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
16.
Behav Pharmacol ; 29(7): 638-653, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30215622

RESUMO

Stroke is a worldwide leading cause of death and long-term disability with concurrent secondary consequences that are largely comprised of mood dysfunction, as well as sensory, motor, and cognitive deficits. This review focuses on the cognitive deficits associated with stroke specific to executive dysfunction (including decision making, working memory, and cognitive flexibility) in humans, nonhuman primates, and additional animal models. Further, we review some of the cellular and molecular underpinnings of the individual components of executive dysfunction and their neuroanatomical substrates after stroke, with an emphasis on the changes that occur during biogenic monoamine neurotransmission. We concentrate primarily on changes in the catecholaminergic (dopaminergic and noradrenergic) and serotonergic systems at the levels of neurotransmitter synthesis, distribution, reuptake, and degradation. We also discuss potential secondary stroke-related behavioral deficits (specifically, poststroke depression as well as drug-abuse potential and addiction) and their relationship with stroke-induced deficits in executive function, an especially important consideration given that the average age of the human stroke population is decreasing. In the final sections, we address pharmacological considerations for the treatment of ischemia and the subsequent functional impairment, as well as current limitations in the field of stroke and executive function research.


Assuntos
Monoaminas Biogênicas/uso terapêutico , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/etiologia , Função Executiva/efeitos dos fármacos , Psicofarmacologia/métodos , Acidente Vascular Cerebral/complicações , Animais , Humanos
17.
Behav Pharmacol ; 29(7): 617-637, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30215621

RESUMO

Executive function is an umbrella term that includes cognitive processes such as decision-making, impulse control, attention, behavioral flexibility, and working memory. Each of these processes depends largely upon monoaminergic (dopaminergic, serotonergic, and noradrenergic) neurotransmission in the frontal cortex, striatum, and hippocampus, among other brain areas. Traumatic brain injury (TBI) induces disruptions in monoaminergic signaling along several steps in the neurotransmission process - synthesis, distribution, and breakdown - and in turn, produces long-lasting deficits in several executive function domains. Understanding how TBI alters monoamingeric neurotransmission and executive function will advance basic knowledge of the underlying principles that govern executive function and potentially further treatment of cognitive deficits following such injury. In this review, we examine the influence of TBI on the following measures of executive function - impulsivity, behavioral flexibility, and working memory. We also describe monoaminergic-systems changes following TBI. Given that TBI patients experience alterations in monoaminergic signaling following injury, they may represent a unique population with regard to pharmacotherapy. We conclude this review by discussing some considerations for pharmacotherapy in the field of TBI.


Assuntos
Monoaminas Biogênicas/uso terapêutico , Lesões Encefálicas Traumáticas/complicações , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/etiologia , Função Executiva/efeitos dos fármacos , Psicofarmacologia/métodos , Humanos
18.
SAGE Open Med ; 6: 2050312117752613, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29375880

RESUMO

OBJECTIVES: This study aimed to identify differences in absolute neutrophils, lymphocytes, and neutrophil-to-lymphocyte ratio between neonates with two forms of ischemic brain injury, hypoxic-ischemic encephalopathy, and acute ischemic stroke, compared to controls. We also aimed to determine whether this neutrophil/lymphocyte response pattern is associated with disease severity or is a consequence of the effects of total-body cooling, an approved treatment for moderate-to-severe hypoxic-ischemic encephalopathy. METHODS: A retrospective chart review of 101 neonates with hypoxic-ischemic encephalopathy + total-body cooling (n = 26), hypoxic-ischemic encephalopathy (n = 12), acute ischemic stroke (n = 15), and transient tachypnea of the newborn (n = 48) was conducted; transient tachypnea of the newborn neonates were used as the control group. Absolute neutrophil count and absolute lymphocyte count at three time-intervals (0-12, 12-36, and 36-60 h after birth) were collected, and neutrophil-to-lymphocyte ratio was calculated. RESULTS: Hypoxic-ischemic encephalopathy + total-body cooling neonates demonstrated significant time-interval-dependent changes in absolute lymphocyte count and neutrophil-to-lymphocyte ratio levels compared to transient tachypnea of the newborn and acute ischemic stroke patients. Pooled analysis of absolute lymphocyte count for neonates with acute ischemic stroke and hypoxic-ischemic encephalopathy (not hypoxic-ischemic encephalopathy + total-body cooling) revealed that absolute lymphocyte count changes occurring at 0-12 h are likely due to disease progression, rather than total-body cooling treatment. CONCLUSION: These data suggest that the neutrophil/lymphocyte response is modulated following neonatal ischemic brain injury, representing a possible target for therapeutic intervention. However, initial severity of hypoxic-ischemic encephalopathy among these patients could also account for the observed changes in the immune response to injury. Thus, additional work to clarify the contributions of cooling therapy and disease severity to neutrophil/lymphocyte response following hypoxic-ischemic encephalopathy in neonates is warranted.

19.
Anal Chem ; 89(18): 10104-10110, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28817769

RESUMO

An inexpensive and disposable paper-based lateral flow strip (PLFS) has been developed as an immunoassay, in which surface-enhanced Raman scattering (SERS) is utilized for sensing signal transduction. The Au nanostar@Raman Reporter@silica sandwich nanoparticles are developed as the SERS probes, which is the key to the high sensitivity of the device. Compared with a colorimetric PLFS, the SERS-PLFS exhibits superior performance in terms of sensitivity and limit of detection (LOD) in a blood plasma-containing sample matrix. In addition, the SERS-PLFS has been successfully used for detection of neuron-specific enolase (NSE), a traumatic brain injury (TBI) protein biomarker, in diluted blood plasma samples, achieving a LOD of 0.86 ng/mL. Moreover, the SERS-PLFS was successfully employed to measure the NSE level in clinical blood plasma samples taken from deidentified TBI patients. This work demonstrates that the SERS-PLFS has great potential in assisting screening of TBI patients in the point-of-care setting.


Assuntos
Papel , Fosfopiruvato Hidratase/sangue , Ouro/química , Humanos , Nanopartículas Metálicas/química , Análise Espectral Raman , Propriedades de Superfície
20.
Lab Anim ; 51(6): 647-651, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28650259

RESUMO

Maintaining appropriate acoustic conditions for animal welfare and data collection are crucial in biomedical research facilities. Negative impacts of disruptive sound are known and can include auditory damage, immune function changes, and behavioral alterations. One type of disruptive sound occurring in research facilities is that of fire alarms. To ameliorate this problem, many facilities have incorporated the use of low-frequency fire alarms that emit tones outside the rodent audible range. The impact of these devices has been assumed to be negligible. However, this has yet to be evaluated with controlled behavioral experiments. Thus, our objective was to investigate the impact of low-frequency fire alarm exposure on locomotor behavior in the open field, a test sensitive to acoustic stimuli disruption. Male mice were randomized to three alarm exposure groups (No-Alarm; Alarm-During; and Alarm-After) and placed in individual photobeam-activated locomotor chambers. The Alarm-During group displayed significantly reduced horizontal locomotion, with a trend towards reduced vertical locomotion. These data suggest that a low-frequency brief alarm tone can temporarily disrupt movement, a valuable insight should an alarm be deployed. Further, findings support close collaboration between researchers and institutional facility staff to ensure appropriate acoustic conditions are maintained, whenever possible, for research animals.


Assuntos
Percepção Auditiva , Incêndios , Locomoção , Camundongos/fisiologia , Equipamentos de Proteção , Estimulação Acústica , Animais , Masculino , Camundongos Endogâmicos C57BL , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA